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ABSTRACT

Procedures for relating strip-chart records to fluorescent

dye concentrations during operational use of the FLD over open water

have been tested.	 It appears practicable to correct for the pertinent

environmental and instrumental variables. 	 FLD estimates of dye
4

concentration require either frequent water sampling from the air,

or frequent in-flight monitoring of standard targets. 	 Procedures

have been established for laboratory analysis of water samples and

for compilation of the data. 	 Compilation is tedious and will require

use of a computer if the present FLD is extensively used for

quantitative work. 	 An improved model having only one photomulti plier

should greatly reduce the variation in sensitivity and facilitate real-

time data reduction.	 Use of any foreseeable model of FLD over
R

relatively clear coastal waters or over ocean waters will require

t	
TJ

msome sampling with depth.	 This has not yet been accomplished from

the air and therefore related data compilation procedures have not yet

been tested.

y.
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INTRODUCTION

The FLD integrates luminescence from a vertical column of dye

solution approximately as deep as the penetration of green sunlight into

the solution. Factors that are continuously variable in space and time

are turbidity, water temperature, and dye concentration. These, in

turn, result in continuous variations in depth of light penetration,

attenuation of emitted luminescence, and attenuation of incident sunlight.

Factors that vary in a less complicated way and are therefore more

easily compensated, are sun angle and instrumental sensitivity.

It is difficult to correlate water samples obtained during airborne

tests with FLD records because the recorder pen and the aircraft are

both moving rapidly. If precise water-sample locations were possible,

then FLD readings could be directly equated to dye concentrations by a
A	 ,

direct empirical method.

However, frequent sampling is inconsistent with effective opera-

tional use of a remote sensor and would restrict the aircraft to such slow

speeds that a boat might as well be used. During initial tests frequent

water sampling served both as a substitute for the standard target device,

and as a further check for theoretical calculations. The method of

computation used in this report approximates the method that will be

required in later operational use of the FLD, using the theoretical

formulas that have been derived in previous reports (Stoertz, 1969)1,

R
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ASSUMPTIONS

1) All of the samples containing rhodamine dye are surface samples,

and it is assumed that the dye concentration in these samples extends uniform-

ly throughout the column sensed by the FLD. Because of the exceedingly high

turbidity of San Francisco Bay during the tests, the penetration of effective

light must have averaged considerably less than one meter, and consequently

this assumption probably does not introduce a significant error for tests over

the Bay. This may not be the case, however, for tests over the Pacific Ocean.

2) Environmental conditions, especially turbidity, changed rapidly

along the flight lines, and it was not possible to obtain samples representa-

tive of each change. Under these conditions it would be erroneous to weight

the samples in proportion to their spacing. It was assumed that in a series

of samples, each one should receive equal weight in determining average

sensitivity, turbidity, and attenuation coefficients.

3) It was assumed that there is a linear relation between dye concen-

tration and the attenuation coefficients (c di and c de ) and between the dye

concentration and instrumental sensitivity (S c ). This approximation enables

solution of the theoretical formula relating dye concentration (R) to lumin-

escence coefficient (rho). As explained below it is probable that one or

more of these are exponential functions, but if this linear approximation

were not used, the formula could not be solved.

4) Attenuation coefficients attributable to water itself are assumed

to be 0.14 m`I for emitted yellow luminescence (c We ) and 0.05 m-1 for

incident green sunlight (cwj) (Stoertz, 1969). The remainder of caicu-

2
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lated attenuation coefficients is attributed to turbidity, so the errors in

these assumed values should be largely compensated by errors in turbidity

attenuation coefficients.

5) About 80 samples were tested for attenuation of both yellow and

green light; about 180 samples were tested for attenuation of yellow light

only. Samples that were tested for both yellow and green attenuation had

a fairly constant ratio between these factors for each test area. This

approximation was used for estimating attenuation of green light in the

remaining samples from each area.

CALCULATION OF SUNLIGHT ANGLES

Sun angles during airborne tests were determined from the

American Ephemeris and Nautical Almanac. Times were noted in

Pacific daylight saving time (7 hours behind GMT). The local time of

.

r

A

sun's transit of the test site meridian is obtained from the Almanac or

from the equation of time as shown by the analemma, on many globes

(Strahler,	 1962, p. 88). The difference between time of transit

and time of each sample gives the sun's longitude at time of sampling.

The sun's declination (i. e. , latitude) on the day of the test is given by

the Almanac. This is subtracted from the latitude of the test site to

obtain the angular difference in latitude. Using a stereonet (Nevin,

1949, p. 380) the angular differences in latitude and longitude of sun's

position from those of the test site are converted into the resultant angular

difference, equivalent to angle of the sun from the zenith. Subtracting from

i

le
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90o gives the angle of the sun above the horizon (+). Refracted angles of

sunlight below the water surface (.*-) are calculated from the relation:

cos	 n
cos .0-

in which the index of refraction of light in air with respect to water (n) is

taken as approximately 1.333.

CALCULATION OF TEMPERATURE CORRECTION FACTORS

The temparature of water samples from the surface of test areas

was periodically measured by thermometer immediately after sampling.

The surface water temperature of San Francisco Bay appears to have been

gradually increasing from 17.00C. to 20. 2 0C. during a two-week test

period (May 4 to May 20). Average daily temperature correction factors

(tc ) to adjust rho values for decreasing luminescence of Rhodamine WT

dye with increasing temperature were determined by graph (Stoertz, 1969)

Fig. 5) as follows:

May 4 - 1.08
May 8 - 1.08
May 13 - 1. 06
May 14- 1.07
May 19 - 1. 04
May 20 0.99

These factors are applied to adjust rho values for equivalence to a standard

temperature of 200C

I
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CALCULATION OF TOTAL ATTENUATION COEFFICIENTS FOR EMITTED

LUMINESCENCE

A typical strip-chart record showing measurement of transmittance

(Te) of yellow light at 5890 X by water samples, by distiM3d water, and by

standard dye solutions is illustrated in Figure 1. For example, transmittanc-

es for samples #Z17 to #246 are shown by the series of short horizontal bars

near the bottom of the chart, while the standards are shown icy the heavier

bars near the top. Sample transmittances are all measured in terms of

component B. Transmittances of standards are measured in terms of both

components A and B. It should be noted that B is somewhat higher than A

in spite of illumination by artificial light, in which A (at 5892 JR) should be

nearly identical to B (at 5890 JR). This apparently indicates a discrepancy

between the gain of the two photomultipliers at the time of testing.

The higher values, appearing as heavier bars, illustrate the

higher noise levels associated with higher light intensities. Transmittances

of distilled water and of a 100-ppb dye solution are very close; this

indicates that there is relatively little absorption or attenuation of yellow

light (at 5890 JR) by Rhodamine WT dye. The very low transmittances of

the water samples indicates that absorption of yellow luminescence by the

dye is negligible in comparison with absorption by suspended particles.

The samples illustrated were all obtained on May 20 in San

Francisco Bay south of San Mateo Bridge, and uniformity of most

transmittances is evident, suggesting that sampling for turbidity during

5
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FLD tests can be done at moderate intervals. Samples shown on Figui

were all taken from the POLARIS in shallow water and noticeable variations

in turbidity were produced by the prop-wash. This may account for most

of the variations evident on the chart.

The FLD readings (component B) on the chart are significant only

in comparison to the readings for distilled water, the ratio of these values

representing the transmittance of the sample in relation to that of distilled

water. The equipment was not suitable for comparison of the transmittance

of distilled water with that of air, due to internal reflections. This defect

in the apparatus also increases the uncertainty in other values. The

equipment has since been improved by use of less reflective materials,

but some internal reflection undoubtedly still occurs. The error is

probably not large for highly turbid samples, such as those from San

Francisco Bay.

The method of calculating attenuation coefficients from these data

is illustrated by a typical data sheet (Table 1) based on the same samples

shown in Figure 1. This calculation uses the relation between transmittance

(T) and attenuation coefficient (c) derived previously (Stoertz, 19691

logeT = - cr (or) T = e cr	 (1)

in which: T = Total transmittance: the ratio of the transmitted radiant
flux to the incident radiant flux

e 2.7183 . . . (Napierian base)

c Total attenuation coefficient (m-1)

r Path-length of the beam (meters)

6
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Table 1. Calculation of attenuation coefficients for emitted
luminescence for water samples from San Francisco Bay

(table includes same samples shown on Figure 1, obtained aboard
POLARIS on May 20, south of San Mateo Bridge. Figures were
rounded after the calculations were complete.)

1 2 3 4 5 6 ? 8

* * B e Te= log T - ( log T cem
Sample B e Bwe

"'^
BWe TweBe e o%,10-1 ogT e

no. B =log 50 = - b L	 r
2	 3 we 2.3026

Z 0.972
(-10 is
omitted) 0.2032x(D (-l-I

=11.3 32 .0
(m	 )

217 0.012 0.475 0.025 0.024 8.386 1.614 18.3
218 0.018 if 0.038 0.037 8.568 1.432 16.2
219 0.017 " 0.036 0.035 8.544 1.456 16.5
220 0.019 " 0.040 0.039 8.590 1.410 16.0
221 0.018 " 0.038 0.037 8.568 1.432 16.2
222 0.027 " 0.057 0.055 8.744 1.256 14.2
223 0.022 " 0.046 0.045 8.650 1.350 15.3
224 0.028 " 0.059 0.057 8.759 1.241 14.1
225 0.023 0.048 0.047 8.669 1.331 15.1
226 0.018 " 0.038 0.037 8.568 1.432 16.2
227 0.016 " 0.034 0.033 8.519 1.481 16.8
228 0.022 0.046 0.045 8.650 1.350 15.3
229 0.019 " 0.040 0.039 8.590 1.410 16.0
230 0.028 " 0.059 0.057 8.759 1.241 14.1
231 0.017 " 0.036 0.035 8.544 1.456 16.5
232 0.009 " 0.019 0.018 8.266 1.734 19.6
233 0.027 " 0.057 0.055 8.744 1.256 14.2
234 0.017 " 0.036 0.035 8.544 1.456 i6.5
235 0.016 0.465 0.034 0.033 8.519 1.481 16.8
236L^ - 0.014 0.465 0.030 0.029 8.465 1.535 17.4 i
FLD-component "B" recorded for light (at 5890 JR) transmitted through

sample.
FLD-component "B" recorded for light (at 5890 JR) transmitted through

distilled water.

7
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Solving for transmittance of emitted light by distilled water (T we)in the

sample tube, the path-length ( r) is known to be 0.203 meter and the

attenuation coefficient for emitted luminescence: (c we)will be assumed to

be approximately 0. 14 m-1 (Stoertz, 1969, equation #25).

	

.'. T We as a cuter	 (2)

2.718'0.14.0.203

Twe a 0.972

With this apparatus the light intensity sensed through the upper portal of

the FLD (component A or B) should be proportional to the transmittance,

as defined above. Therefore, all samples should have approximately the

same ratio between transmittances and recorded light intensities.

' T S4 T.. - e	 ^'(or) Te wee	 (3)
Be Bwe Bwe

in which: T  = Transmittance of light (at 5890 R) by a water sample

Twe Transmittance of light (at 5890 I) by distilled water

Be ^ Recorded intensity of FLD-component B for light

	

(at 5890	 transmitted through a water sample

B =Recorded intensity of FLD-component B for light
we (at 5890 R) transmitted through distilled water

Application of equation ( 3) permits calculation of approximate

transmittance of light (at 5890 JR) by the water samples (column #5 in

Table 1). These values are for a path-length of only 20.3 cm. The

corresponding total attenuation coefficients (c e)for standard path-lengths

of 1 meter are calculated by equation (1), as shown in the last 3 columns

of Table 2
8
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log eT -cr

(or) log e Te = -cer

c=e - logeTe
-----r-

r

C _ - loge 1 0 . log Te
e r

in which: c e = Total attenuation coefficient for light (at 5890 R) by
water sample

CALCULATION OF TOTAL ATTENUATION COEFFICIENTS FOR INCIDENT

SUNLIGHT

Sections of a typical strip-chart record showing measurement of

transmittance (T i) of green light by water samples, by distilled water,

and by standard dye solutions is illustrated in Figure 2. The samples

illustrated include 10 of those shown on Figure 1. Apparatus used for

the measurements has been described (Stoertzand others 1969). Transmittances

of incident light through the samples are measured indirectly by means

of the relative intensities of luminescence from a small cylinder of

rhodamine dye excited by the incident light. Luminescence of the dye is

recorded by means of rho. The lowest line on Figure 2 is a record ofw

solar intensity (component A) measured at the upper portal, although in

this cane the FLD was lying on its side.

The marked fluctuations in rho values evident on Figure 2 result

from gradual tilting of a hand-held mirror as it reflected sunlight through

the sample tube. Only the maximum stable values are useful, representing

the periods when sunlight was reflected exactly vertically into the vertical

(1)

ai
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Table 2. Calculation of attenuation coefficients for incident light
for water samples from San Francisco Bay

(table includes same samples shown on Figure 2, obtained
aboard POLARIS on May 20. Figures were rounded after
the calculations were complete.)

1 2 3* 4* 5 6 7 8

A • Ti 1 log Tii
- (log Ti)

•ai
loge101ogTi

Sample Air`* Awi*** Awi TWA =log r
no.

2	 3 Awi
`:.!

10 is
6 2.3026

0.297L90. omitted)
x O

( -log Ti)

.753 - n7
217 0.014 0.946 0.015 0.015 8.164 1.836 14.2
218 0.018 0.963 0.019 0.018 8.265 1.735 13.5
219 0.015 0.970 0.016 0.015 8.185 1.815 14.1
220 0.017 0.955 0.018 0.018 8.246 1.754 13.6
221 0.014 0.946 0.015 0.015 8.164 1.836 14.2
222 0.019 0.941 0.020 0.020 8.299 1.701 13.2
235 0.011 0.880 0.012 0.012 8.090 1.910 14.8
239 0.014 0.903 0.016 0.015 8.185 1.815 14.1
243 0.013 0.880 0.015 0.015 8.164 1.836 14.2
245 0.013 0.880 0.015 0.015 8.164 1.836 14.2

Values were adjusted to correct for use of 50-ppb dye solution as a
standard of comparison in lieu of distilled water, for which rho
values were off scale.

* FLD-component "A" recorded for incident green light transmitted
through sample .

** FLD-component "A" recorded for incident green light transmitted through
distilled water.

10
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sample tube. Greater stability could be achieved by use of a mechanically

operated mirror in a future model of the apparatus.

In this test, the values for dye solutions of 50 ppb and 100 ppb are

markedly lower than those for distilled water, indicating a high rate of

absorption of green light by Rhodamine WT dye. By comparison, absorption

of green light by the suspended sediment of San Francisco Bay at the time of

sampling (May 20) was evidently many times greater than that of a 100-ppb

solution of rhodamine dye, as shown by the very low rho values for the

samples. Samples shown were all obtained aboard the POLARIS in the area

south of San Mateo Bridge.

As shown on Figure 2, the recorded rho value resulting from light

transmitted through distilled water varied appreciably, apparently changing

with sun angle. Frequently it went off the top of the scale (not shown). At

such times it was necessary to use the value for a 50-ppb solution of

rhodamine dye as a standard for comparison, instead of distilled water.

A procedure similar to that described above (equations #1 to #3) was used.

Attenuation coefficient of distilled water for incident green light (cwi) has

been estimated to be approximately 0. 05 m" 1 (Stoertz , 1969 , equation

4

#25).  In this apparatus the path-length of light through the sample is

29.7 cm. (11.7 inches). Over this path-length the transmittance through
RN

distilled water (Twi) is estimated to be approximately 0. 985 m"l.

The procedure used for computation of attenuation coefficients for

the samples shown on Figure 2 is illustrated by a typical data sheet (Table 2),

11
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using a method similar to Table 1 and equation (3):

(or) Ti = T.	 Ai
Al 

Awi	 Awi

in which: Ti = Transmittance of incident green light by a water sample.

Twi=Transmittance of incident green light by distilled water.

Ai =Recorded intensity of FLD-component A for incident green
light transmitted through a water sample.

A .=Recorded intensity of FLD-component A for incident green
wi light transmitted through distilled water.

CALCULATION OF ATTENUATION BY DYE

Procedures used for calculation of total attenuation coefficients

(c e and c i) of water samples were described in the foregoing two sections.

Interpretation of FLD readings (rho values) in terms of dye concentration

requires that the component of total attenuation attributable to dissolved

dye be separately evaluated and the relation expressed as a function of

dye concentration. An estimate of this relation was previously based on

the absorption spectrum of a known concentration of Rhodamine WT dye deter-

mined by spectrofluorometer (Stoertz, 1969), Results of recent

attenuation tests also give data for estimating this relation, as described

below. Because of the limitations of the apparatus, the results are

considered an approximation. The results have been used in preliminary

I nterpretation of FLD records.

Monitoring of 50-ppb and 100-ppb dye solutions during attenuation

tests produced recorded values of light intensity (FLD-components A or B).

(4)

1Z
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From this, total attenuation coefficients ( c e and c i ) were calculated by

the same procedure used previously. 	 Data are shown on Table 3.

The total attenuation coefficients must include components

attributable to the dye ( c de and c di) and to the water ( c We and cwi)•

As stated previously, the latter values will be assumed to be 0. 14 m-1 (cwe)

and 0.05 m -1	 ( cwi).	 Subtracting from total attenuation coefficient s:

cde " c e - Cwe ;	 cdi = c i - cwi

For 50 ppb: cd e^K 0 . 172 - 0.140 ;	 c di : 0.800 - 0.050

cde a. 0.032 (m-1)	 cdi 14 0. 750 (m-1)

For 100 ppb: cde	 0.204 - 0.140	 ;	 cdi 21 1.512 - 0.050	
F.

c de z 0.064 (m-1) 	 cdi C 1.462 (m-1)

Relating the above coefficients to dye concentration (R):

r cde	
0.032 m

R	 50 ppb

cde a 0.00064 R m 	 relation, 0 to 50 ppb)
,3 R

cde	 0 064 m-1

R	 100 ppb

-; cde	 0.00064 R m-1	 (average relation, 0 to 100 ppb);

cdi	 0. 750 m-1
4 ^R	 50 ppb

cdi it 0.015 R m- 1	 (average relation, 0 to 50 ppb
t

cdi	 1.462 m-1
R	 100 ppb

cdi 1' 0.015 R m' 1	(average relation, 0 to 100 ppb)
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• 1': ► ble i. Calculation of total attenuation coefficient s of st y lids ► rd
solut iotis of ltho(iamine w'[' (lye

(11gkires were romidt-d :kil,•r C.-ilk ulations were conipli•te)

I i 14 ^7 t, ^l^ 8

Stanch r(I
R atio ,

1, ►

I'WeSt.
1i^	 T ► •

=lo}^0 -(log 1' (,

cc.
lo}, ► J0• lo^;•fc--

BSolution , B r

`Phocia-
we WV

z0,y 2
I-	 10	 is 0,2012.

mine
2 /^^J

x	 .}
nutted)

1 -lob;	 'I'c,)
%ti'I'	 cl y ► (averag ((	 //=l l . 3 i2'^

values ^»-1)

0.	 1 7 '^ 0. -I 7 7 0.<	 t;
50 ppl) 0 . 46 1 0. 4(") 7 () , (p) I

Averag	 0	 1)1)1,) 0,yy3ti 0.900 985 0.0152 0, 172
0. -17"1 1 0 16-T

1 00 ppl) ().	 160 0.-1(, 7 o.985
verage i 100 ppl) 0.987 1 0.959 9.98? 0.0180 0.204

Values below are for incident sunli g ht, calculated b y sank nicthod
,4wularcls A I Awl A, /Aw l ri to ^	 Ti -(lo g T) ci	 (IVi-

50 ppl) 0.702 0. 95?. 0.800
0. 04,"	 -

0. 788 9 . 897
1

0. 103 0.800
100 ppl) 0.617 0.952 0. 0 18 9.805 0 . 1 95 1	 . 5 1 2

r
FLI)-coniponent "B" recorded for light transmitted through solution

FI,D-componc , ,,t "B" recorded for light trailsmittc d through distilled water

r i = 0.985 x 4
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Apparent values of constants for use in later formulas relating rho values

to dye concentrations are:

Let cdi v& f R ; Let c de : h R

c di T& 0.015 R m-1 ; cdell 0.00064 R m-1

.'.f A 0.015 m-1 ; 1, Lk 0.00064 m-1

CALCULATION OF ATTENUATION BY TURBIDITY

For purposes of interpreting FLD records, the term turbidity has

been applied to all components of the water contributing to light attenuation

other than dissolved rhodamine dye and the water itself. Therefore the

attenuation coefficients due to turbidity (c te and r ti ) include the combined

effects of suspended sediment, organic matter, and coloring matter other

than rhodamine dye. If the total attenuation coefficients (c e and c i) of a

sample have been measured and the dye concentration (R) is known, the

turbidity attenuation coefficients are determined as follows (all units are

in m-1 except R, which is in ppb):

cte • ce - cWe - cde ; cti : ci - cwi - cdi

in which: cde 0.00064 R ; c di = 0.015 R

If either one of the total attenuation coefficients of a sample has

been measured (e.g. , c e) an approximation of the other total attenuation

coefficient (e.g., c i) can be obtained, provided that a sufficient number

of other samples from the same area have been tested. If other samples

show a nearly consistent ratio between attenuation of yellow light by

turbidity (cte) and attenuation of green light by turbidity (c ti) then the

ratio (cte/cti) can be applied to the untested samples. Samples from

15
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Table 4. Relative attenuations of yellow light and green light by turbid
San Francisco Bay waters

(based on 53 water samples from H-19 helic t)pter on May 8
and May 13, and from POLARIS on May 19 and May 20)

i

q) Distribution of ratios cte/c .i by	 ercent **Aver ages

+r o% 0% 0% 0% 0% 0% 0% o%
V

Area ,°^
%0

0
t_

C
00

0
a%

0
O N M

G

sampled 0 0 ^,
4a 4j

Q 0

O 00 0% C N M
tw
t^(d td dN

0
0

ncisco Bay
 San MateorBrid ,gqe from the 30 3 3 20 17 17 17 10 1.2 17. 14.

POLARIS ) *
San Francisco Bay
north of San Mateo 4 100 0. 76 7.5 9.9Bridge (from the

helicopter)
We stpoint Slough
ear Redwood Cr. 19 5 37 37 11 5 5 0.83 8. 14 9.9southwest edge of

S. F. Bay (fr.H-19)

* Samples from POLARIS show extraordinarily high turbidity attributable
to disturbance of bottom sediments in shallow water by prop-wash.

** Definitions:

cte - Attenuation coefficients attributable to suspended sediment,
coloring matter (except dissolved fluorescent dye), and organic
matter, for yellow light at 5890 k. Intended to be applicable to
attenuation of emitted luminescence at 5890 A (units are
reciprocal length, m-1)

cti - Attenuation coefficients attributable to suspended sediment,
coloring matter (except dye) and organic matter for green
incident sunlight in spectral range from about 5400 A o
about 5800 JR (units are reciprocal length, e.g. , M-1)
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San Francisco Bay had ratios falling predominantly within a small range

for each test area (Table 4).

In general, it is concluded from the San Francisco Bay samples

that the suspended particles in one area during the sampling period are

likely to be sufficiently homogeneous that the ratio expressing relative

attenuation of yellow light and green light will not vary significantly.

At least the ratios were found to be more consistent than the absolute

values of turbidity, which varied abruptly from place to place. The non-

uniform distribution of turbidity was clearly visible from the air, the most

turbid water having the appearance of long continuous strands of muddy

water generally elongated in the direction of the current. The relative

consistency of the ratios by contrast to the actual turbidity levels is

shown by Table 5.

The figures on Tables 4 and 5 also show an apparent relation

between the ratio (cte/cti) and the actual levels of turbidity, as inferred

from the attenuation coefficients (c te and cti). This relation is shown

graphically on Figure 3, based on tested samples from Westpoint Slough

and from the area of San Francisco Bay south of San Mateo Bridge. It is

evident from the graph that at the time of the tests, increases in turbidity

were associated with larger increases in attenuation of yellow light in

comparison with attenuation of green light.

Turbidity attenuation coefficients measured in samples from the

Pacific Ocean were less consistent than in San Francisco Bay, the ratio

17
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Table 5. Attenuation coefficients attributable to turbidity in San Francisco
Bay and vicinity, showing relative consistence of the ratio cte/cti*

Samples from San Francisco Bay Samples from Westpoint Slough,
south of San Mateo Bridge near Redwood Creek, southwest
sampled from the ehi POLARIS edge of S. F. Bay from helicopter

1 2 3 4 5 6 7 8

cte (m	 ) cti(xn	 ) cte(rn- cti(M- )
(Approx (Approx (Approx. (Approxf

Sample turbidity turbidity
attenua- Ratio; Sample turbidity

ttenua-
turbidit
attenua- R!

no. attenua- tioncoef cte /cti no, tion coef tioncoef cte/ctiion cod' ficient ficient ficient
ficient for inci- 2	 3 for yyel-

ow ligh
or inci- 6	 ?

for yel- dent g
at 5890A

dent gree
owli ht ) sunlight) sunlight

188 15.1 13.2 1.15 87 11.2 14.1 0.80
192 13.9 13.1 1.06 89 10.8 13.0 0.83
201 13.6 12.8 1.06 92 8.0 10.3 0.77
207 18.5 14.1 1.32 96 10.2 12.6 0.81
208 16.1 14.8 1.09 98 11.1 13.6 0.81
209 12.5 12.6 1.00 100 7.6 10.7 0.71
217 18.1 14.0 1.29 103 9.5 11.9 0.79
218 16.1 13.2 1.22 104 10.0 12.3 0.81
219 16.3 13.3 1.22 105 11.8 14.3 0.83
220 15.8 13.1 1.20 108 5.1 6.4 0.79
221 16.1 14.1 1.14 109 7.4 10.3 0.72
222 14.1 13.0 1.08 112 5.6 9.0 0.62
235 16.6 14.6 1.14 115 9.8 12.2 0.80
239 17.9 13.9 1.29 116 9.5 12.4 0.76

Attenuation coefficients were determined by an experimental
apparatus, and the accuracy is unknown.
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cte/cti being less than 1.00 in approximately 5 out of 11 tested samples

and greater than 1 . 00 in the remaining 6. The average value of the

attenuation coefficient for yellow light ( cte ) among these 11 samples was

0.77 m-1 while the average value for green light ( cti ) was 0.88 m- l . These

values seem anomalously high, being approximately double the values that

would be expected from turbid coastal water ( Polcyn and Rollin, 1969,

Fig. 7; Stoertz, 1969'h^,, Fig. 3). Because of the admittedly improvised

and experimental nature of the attenuation apparatus the values must be

considered preliminary. It is conceivable that turbidity attenuation

coefficients were as high as 0.77 to 0.88 m -1 in the Bonita Channel

west of Golden Gate, since the tests were less than 1 mile offshore,

in an area close to the outflow of turbid water from San Francisco Bay,

and in an area not known for particular clarity of water at that time of

year. If the coastal waters were as turbid as indicated during the tests,

the high sensitivity of the FLD to low dye concentrations is encouraging. 	
I

In addition, this indicates the importance of sampling with depth in the	 I

less turbid ocean waters.

CALCULATION OF SENSITIVITY CORRECTION COEFFICIENTS

The necessity of one or more additional correction factors to

permit rationalization of FLD records and interpretation of dye concentra-

tions has been explained in a previous report (Stoertz, 1969 )x. It was

concluded that the principal factors still to be accounted for are

luminescence efficiency of the rhodamine dye and instrumental sensitivity,

19
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and that these are best compensated for by means of a single factor to be

termed the sensitivity correction coefficient (S c ). This can be viewed as

the increment in rho produced by the luminescence from an infinitely small

quantity of a luminescent solute divided by that infinitely small quantity.

Consequently it is a measure of the intrinsic luminosity of the dye and of

instrumental sensitivity. Since the coefficient, as defined, contains

indeterminate instrumental factors it is most useful to view it as an

error factor, simply being the quantity necessary to balance the equation

of calculated versus measured rho values after all known factors have been

considered. If this quantity (Sc ), when calculated for a number of rho

values, shows some rational relationship to dye concentration, R

(e.g., if Sc a R, or if Sc = a Rb , etc.), then it can be inferred that

most of the pertinent factors related to rho have been considered. It was

further concluded that if the relationship can be expressed as a linear

function (i. e. , if Sc a R), then the value "a ll can be used in formulas

estimating dye concentration (R) from FLD records (rho values).

Application of the above principles requires that every time the

sensitivity correction coefficient is calculated in operational use of the

FLD, the instrument must view rhodamine dye solutions of known

concentration under sufficiently known conditions that all pertinent
A

factors related to rho can be evaluated and included in a theoretical

calculation of rho. It has been concluded (Stoertz 	 "that this

requirement will be best achieved by in-flight monitoring of standard

20

i
1

a



r

targets. The alternative was to actually sample the target area at frequent

intervals in flight or from shipboard and to use these samples in approxi-

mately the same way that the standard targets are used. The principal

requirement for this was that the rho value corresponding to the sample

must be known or closely approximated. Because there is a mechanical

problem of sampling precisely within the one-degree field-of-view of the

FLD from the air, and similar problems of relating aircraft speed to

sample location, the sensitivity coefficients are calculated for groups of

samples. Then errors in sample locations may be compensating,

permitting calculation of meaningful average values of sensitivity

coefficients.

The method used in these calculations is illustrated by Table 6,

a typical data-sheet covering samples #217 to #222, six of the samples

that are also shown on Tables 1, 2, and 5. The formula for rho is a

theoretical formula derived in a previous report (Stoertz, 1969b,

equation #22). It assumes that vertical dispersal of the dye is nearly

uniform throughout the column sensed by the FLD. Because of the very

high turbidity of the water and the undoubted very low light penetration

during this test, the assumption is probably valid.

The recorded rho values used as the basis of calculations in Table

6 (column #2) are the difference between the actual values recorded on the

strip chart and the apparent "zero" value. The latter is taken as the

average background level recorded when the FLD is viewing open water

containing no dye, during level flight. This value varies during the tests

t

21



0	
Y

Table 6. Calculation of sensitivity correction coefficients of water samples
from San Francisco Bay

( same samples as shown on Fig. 1, Fig. 2, Tables 1, 2, and 5;
samples were obtained aboard POLARIS on May 20, 1969)

Formulas: P -. SctG sin{ csc 411.	 (or) Sc a P(ci csc 4+ ce)
c i csc 400 + c e 	tc sin # csc w

Assumption for trial purposes: Sc I► a R (in column #0)
(-10 omitted after logs; figures were rounded after calculations completed.)

1 Sample no. 217 218 219 22 0 221 222

2 Recorded rho (P) 0.065 0.085 0.375 0.225 0.025 0.045

1740201
3 ^► (nearest la) 68° 68° 68° 68° 680 690

♦ (nearest 20 1 ) 73040' 73 040' 73 040' 73 040' 73 040'
5	 tc 0.99 0.99 0.99 0.99 0.99 0.99
6	 ci 14.23 13.45 14.07 13.60 14.23 13.19
7	 log sin 9.967 9.967 9.967 9.967 9.967 9.970
8	 log tc 9.996 9.996 9.996 9.996 9.996 9.996
9 log c S  ^ 0.018 0.018 0.018 0.018 0.018 0.016

log c i 1.153 1.129 1.148 1.134 1.153 1.120
log(c icsc= 9	 0 1.171 1.147 1.166 1.151 1.171 1.137
Antilog (D 14.83 14.02 14.66 14.17 14.83 13.70
c e 18.29 16.23 16.50 15.98 16.23 14.24
(cicsc a. + c e )z 1 33.12 30.25 31.16 30.15 31.06 27.94
log P 8.813 8.929 9.574 9.352 8.398 8.653
log(c icsc^+ce)* 1.520 1.481 1.494 1.479 1.492 1.446
og (P(cicsc.w+c e * 0.333 0.410 1.068 0.831 9.890 0.099
log(tcsin#csc	 *** 9.981 9.981 9.981 9.981 9.981 9.982

logs = 0- 0.352 0.429 1.087 0.851 9.909 0.117
Sc : Antilog 2.251 2.688 12.22 7.092 0.812 1.310
R,	 b 12.5 14.2 45.4 27.2 5.2 7.2
a it Sc/R 0.180 0.189 0.269 0.261 0.156 0.182

z log
**	 +
***	 7 8 9
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and was almost invariably lower than the "zero" setting of the recorder pen.

The level is probably related to differences in gain of the two photomultipliers.

That such differences exist was previously demonstrated and is clearly evi-

dent on records made by artificial light (e.g., Fig. 1). This discrepancy is

probably an inevitable consequence of using two photomultipliers and would

be remedied in future designs of the FLD (D. A. Markle, G=- °eC=UDsi0

1969).

The changes in operational "zero" level are not a problem because

dye was confined to discrete patches and the aircraft crossed a non-

luminescent water target before and after each pass across a dye patch.

This made possible a frequent correction in compiling the data. In future

operational tests this may be a problem if dye occurs throughout the water

body. Then changes in zero level may be indistinguishable from changes

in luminescence signal. The problem ma,% oe more serious over land

because of continuous changes in refa_ectivity along a flight line. A possible
d

solution is to include a non-luminescent target in the standard target device

to give in-flight monitoring of operational zero level. A suitable material

during tests on the ground, giving an FLD-reading similar to a tank of

water, was a sheet of polished opaque black plastic (acrylic resin). This

has the advantage that both the absolute reading and the noise level appeared

similar to a calm, deep water target. The validity of this comparison has

not yet been established by testing in flight over open water.

d

i

1

I

I
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The values of sensitivity correction coefficient (Sc ) calculated in

Table 6 (column #20) need to consider dye concentration (R) in order to

be used in calculation of dye concentration from rho values where water

samples were not taken. To keep these calculations manageable, i • is

convenient to use a value that might be termed the sensitivity constant (a)

in the relation (Stoertz, 1969b, equation #19):

Sc a a R

Application of this equation using recent test data, as typified by Table 6

(columns #21 and #22), showed that average values of the "constant" (a)

are a good approximation of (a) for short test periods. Comparison of

a and R (Table 6) shows a residual proportionality, suggesting that a more

accurate approximation is exponential:
b

Sc as a R

Verification that an exponential relation occurs for samples

collected on May 20 i obtained graphically b plotting dyeY 	 s	 e g P	 Y YA t g Y concentration

(R) versus sensitivity correction coefficient (S c , Fig. 4). Sixteen samples
i

`	 (#217 to #232) obtained between 12:14 and 12:20 p.m. are plotted on the graph.

Determination of the approximate relation using the highest and lowest

points (samples #219 and #221) is summarized in the following tabulation:

Samples	 Scvas	 R values

#219	 12.22	 45.4 ppb

#221	 0.812	 5.2 ppb

24
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Assumed curve, for trial purposes:

Sc=aRb

Substituting foregoing values in simultaneous equations:

12.22 = a 45.4b

0.812 =a 5.2b

taking logarithms:

log 12.22 = log a + b log 45.4

log 0.812 = log a + b log 5.2

Subtracting: log 12.22 - log 0.812 = b log 45.4 - b log 5.2

1.087 - (9.909 - 10) = b (1.657 - 0.716) (numbers are rounded)

b = 1.08?+ 0.0906 =^ 177 W 1.251
1.657-0.716	 0.941

solving for a:

12.22 = a 45.4 1.251

log 12.22 = log a -#- 1.251 log 45.4

1.087 - 1.251 (1.657) '• log a

1.087 - 2.073 = log a

log a = - 0.986

a = antilog (9.014 - 10) s 0.1033

resultant values: a = 0.1033
(or) Sc S 0.1033 81.251

b = 1.251

This curve is plotted on Figure 4 by dashed line. Alternatively, the

closest linear approximation of the relation, but giving a greater error

J

for the highs fl and lowest values, is

Sc 9 0.22 R (or) Sc M a R in which a s 0.22
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This relation is given on Figure 4 by dotted line. The distribution of points

is such that at concentrations less than 30 ppb either formula is suitable

for an approximation. This illustrates that a linear approximation of the

relation between dye concentration and sensitivity coefficient is generally

sufficient relative to other assumptions that are made in compilation of

the FLD data. In operational use, the errors may be minimal for field

conditions that fit the low dye concentrations (e.g. , 0 to 10 ppb);

fortunately this is the range in most foreseeable studies.

Using similar procedures, the average values of the sensitivity

constant (a) were calculated for segments of the test periods during which

all factors appeared fairly constant. During future operational use it is

envisioned that the length of such segments may be determined by the

time interval between viewing standard targets. Practical limits may

include such factors as variation in the illumination of ti: a standard target

device. The target may be shadowed on westbound traverses and

illuminated on eastbound traverses.

RELATION OF SENSITIVITY TO S OLAR INTENSITY

A preliminary examination of FLD records from the recent airborne

and shipboard tests in Menlo Park indicates a correlation occurs between

low levels of solar intensity (component A) and FLD readings ( rho). It is

suspected that solar intensity variations might influence sensitivity of the

instrurrit-n t to increments in rhodamine dye. For this reason it is easier

to use the ratio of dye concentration (R) to luminescence coefficient ( rho)
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as a measure of sensitivity. A plot of these ratios (R/rho) against solar

intensity (A) is shown in Figure 5.

It is concluded from the graph that there is no correlation between

sensitivity and solar intensity, but that there is less variation within each

day of testing compared to different days. The samples from each test

area cluster on the graph (Fig. 6). The variation with testing dates does

not suggest that an instrumental drift with time could explain this distribution.

In general, no significant correlation is evident between sensitivity

and solar intensity during the periods of sampling. These are the periods

when the aircraft was flying nearly level over patches of rhodamine dye.

Correlations between the two factors apparently occurred when the plane

banked in turning at the ends of each traverse. Therefore, the records of

solar intensity appear to be unnecessary in interpretation of dye concentra-

tions from rho values. It is useful to record A, however, since these

fluctuations indicate movements of the plane.

RELATION OF FLD VALUES TO DYE CONCENTRATION

Data compilation is completed by dividing the test periods into

segments of apparent uniformity of the principal variables described

above. For example, the airborne and shipboard tests in Menlo Park

from May 8 to May 20 were divided into 13 such segments averaging

10 minutes each. They ranged in length from 2 minutes to 21 minutes,

and the instrument was re-calibrated during each segment using water

t	 ^

s
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samples. An average of 10 water samples was used during each of the test

segments, the number ranging from 5 to 16. Compilation is easier for

longer segments, but less reliable. A principal factor in limiting the

length is a change in apparent sensitivity of the instrument. This should

be nearly eliminated in future models of the FLD by using only one

photomultiplier (D. A. Markle, oral=	 un. i969) .	 " ,^

The method of calculating the relation between dye concentration (R)

and FLD reading (rho) for a typical test segment is illustrated on Table 7.

This utilizes the theoretical formula derived previously (Stoertz, 1969

equation #36), which assumes uniform dispersal of dye throughout the

column sensed by the FLD. The calculation gives the average curve of

dye concentration versus FLD reading that occurred during the test, by

calculating rho values for four convenient points on the curve (values in

column #23). The methods of calculating all unknowns in the formula

(a, tc' -9' ' cti I cwi' cte , cwe, h and f) have been described above.

The values substituted in Table 7 can be averages for all samples 	 ►

taken during the period or averages based either on time intervals between

samples, linear distance between samples, or on frequency distribution of

rho values represented by the samples.

A useful procedure for future operational use is to calculate the

relation for dye concentrations less than 10 ppb, and use corresponding

values of the variables. This would be important for variables having an

exponential relation to dye concentration (viz., a, h, and f ). In Table 7

the values were averages for all samples. 	 Y

x
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Table 7. Calculation of relalt io n bt-tweell dye concert ► • ation and VLD readings
for selected short test pci-lod (1 : 14 to 12:20 1). n-1. un May 20, 1909)

For111uIa:
lZ a t	 sill ^ C'sc [^

P_	
l

 IZ fcsc h+IZh + c 	 cscd	
t 1

+c rsc t► ♦ c we +^
wl	 t ^•

Notes: I ► Symbols are identified in acco111panying text.
2) Coluiilns 001 to H 0 are based on average values for the group of

16 samples identified in column 0c).
3) Figures were rounded after calculations were completed.
41 (- 1 0) is omitted from loLarlthms.

Ales 217 -2V-

0.216 9 log(cwi+c,t0*, I.	 1	 149	 I t log a- log	 2 9.3345
0.99 t log c• sc e=log 5 0.0169	 I log t c_ =	 log	 3 9.9956c,

Ic
alll

74 0 10' 1 logEc w i+c• 	csc l	 .	 13111	 I log sino-log -1 '1.9692
sc .0- 1.039 Antilog	 l 13.55 logcsc^=log "^ 1 .0169

( m -1 12.911 3 c tE, (m	 1 ) 15.87	 c l t	 +r	 ^i 9.3162ti

( 111	 )wi 0.05 c 	 (111	 1 0. 14 11 0.00004
w I +(-' t I	 f> XJ 1 3.03 1 41 29.56 f 1).015

' 3 Selected R values (>>b l 1 0 20 40
log R = log 0 0.00 1.00 1.3010 1.6021
log numerator	 '( +^ 9.3162 0.3162 0.6173 0.9183

t R h =0 x 0.00064 0.0064 0.0128 0.0256
log f - log 8. 1.761 8.1761 8. 1761 8. 1 761
log(R f csc a) - 0 - 0 8. 1930 9. 1930 9.4940 9.7951
R f c sc a = Antilo 0.0156 0. 1 560 0. 3 1 1 1; 0.0238
Denominator =	 2 + 29.58 29.72 29.88 30.21

1 log denominator	 log 3 1.4710 1.4731 1.4754 1.4802
2 log P( ( rho) -	 -	 3 3 7.8452	 18.8432 9.1419 9.4381
3 ^o ( rho) = Antilog	 3 0.0070 0.0697 0. 1 386	 1 0. 2742

9 = log8
1	 = log 5
1 - 0+

i
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The actual curve of R versus rho can be plotted, or the relation can

be treated mathematically. The curve delineated by Table 7 is shown on

Figure 7 (solid line). Curves calculated for other test segments are

plotted on the same graph (dashed lines). Most of the relations are nearly

linear, and the linear analog of each curve is shown (Fig.  7) .

These curves are used in scaling the strip-chart records to read

directly in terms of dye concentration. A typical FLD record showing the

final scaling (horizontal ruled lines) is illustrated in Figure 8.

A segment of strip-chart record during a period of significantly

lower sensitivity is illustrated by Figure 9, made during tests over

Westpoint Slough, near Redwood Creek. A period of significantly higher

sensitivity is illustrated by Figure 10, made during tests over San

Francisco Bay north of San Mateo Bridge. The latter record also

illustrates sufficiently rapid chart speed (1 inch per second) to show the

limitations of pen response time. The uniform slope of all peaks apparent-

ly results from this limiting factor. A comparison of the spacing of

horizontal lines on Figures 8, g, and 10 shows that changes in sensitivity

are appreciable.

A period of high sensitivity is illustrated by Figure 11, made

during tests over the Pacific Ocean west of Golden Gate. The high

sensitivity is attributable to the clarity of the water and possibly to the

dispersal of dye with depth. The FLD readings could not be interpreted

by formula because sampling with depth was not done and because the

S
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vertical column of water sensed by the FLD was probably much deeper than

the lower limit of the dye. Surface samples (#142 and #143) analyzed by a

laboratory fluorometer showed concentrations of 0.5 and 1.4 ppb. Locations

of these samples as shown on Figure 11 are at the lowest possible levels of

rho. This indicates a sensitivity of 0.1 or 0.2 ppb was achieved.

SUMMARY AND CONCLUSIONS

1) Several environmental factors related to function of the FLD over

open water are water turbidity, water temperature, and fluorescent dye

concentration. Consequently, variations in depth of light penetration,

attenuation of emitted luminescence, and attenuation of incident sunlight

occur continuously in space and time. Sun angle and instrumental

sensitivity vary in a less complicated way.

2) Methods of estimating the above factors and oaf compiling the

resulting data have been tested. The methods approximate those to be

used in future operational use.

3) Using an artificial light source in which components A and B are

equal, there is a large error between recorded values of components A and

B. This will not be a problem for an FLD having only one photomultiplier.

4) Laboratory work with attenuation equipment indicates that

absorption or attenuation of yellow light by Rhodamine WT dye is very

slight relative to other factors. Therefore, in natural water samples,

self-absorption of luminescence by dye appears to be negligible when

compared to absorption by the suspended particles.

t
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I I	 tiAtitl'l.k.
.r

ICI	
4	 +	 111'11

SAMPIA _L,	 ^^I
i

1,0 G

i\'F.14 I1( A1. I,INI S A H I 	 I I\1I	 iNIJ FIt\ AI.ti OF 10 SF.CONIitiI

1'.xpIitnat 1011

Record made' aboard POLARIS during passage across a cloud of rhodamine
dye of concentrations ranging from 2 ppb to 60 ppb.

Recorder pen line is a trace of lun.inescence coefficient (rho) computed by
the analog computer in the FLD.

Period shown is from 12:13 p.m. plus 50 seconds to 12:15 p.m. plus 25 sec
Horizontal lines are (lye concentrations for average conditions during the•

95— second period shown, calculated by the theoretical formula:

(c w ic sc +0- + c t i s sc a +c we 4-
R -

a t e• :;ill	 csc^ - f p'_ • sc^W - h p

Close empirical analog of sensitivity: C-=0.007042  R
Location: latitude 37 0 34'N. , longitude 122012'W.
Sun angle above horizon: approx. 68 0 at right edge, slightly higher at left.
Water telllperature: 20.20C.
Tenlporature corr ection coefficient: 0.99
General location: South of San Mateo Bridge.

r

Figure 8. Record from Fraunhofer Line Discriminator used as a shipboard
fluorometer in San Francisco Bay, May 20, 1969
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5) Absorption of green light by Rhodamine WT dye appears to be

more significant than is the case for yellow light. Absorption of such

light by suspended particles in the turbid waters of San Francisco Bay is

many times greater than that of a 100-ppb dye solution.

6) If coastal waters used for FLD tests are as turbid as indicated

by measurements, then the observed high sensitivity of the FLD to low

dye concentrations is very encouraging-. This finding also indicates the

necessity of sampling subsurface waters during use of the FLD. A

limitation of the present method is the assumption that the dye is uniform

throughout the water column sensed by the FLD.

7) Attenuation from dissolved dye in water samples has been

calculated and expressed as a function of dye concentration. These

relations are such that the constants f and h are evaluated as approximately

equal to 0.015 m-1 and 0.00064 m-1 re spectively.

8) An assumption required without use of a computer, is that there

are linear relations between the dye concentrat ion and sensitivity, emitted

light attenuation, and incident light attenuation.

9) Limitations in the experimental attenuation equipment made

estimation necessary of attenuation coefficients of pure water for yellow

light (5890 JR) and for green light, from published data (Jerlov,--.-

1968; Polcyn.	 Roo .di,	 ):. :: :.1969)

10) A limitation is that attenuation coefficients due to suspended

particles and to dissolved dye were measured by the same experimental

equipment and need further scrutiny.

i
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! xpia11ation

Record was made from 11 -19 helicopter during passage over a
patch of rhodanilne dye of concentrations ranging from 0 to
approximately 250 parts per billion.

Upper- record is a trace of solar intensity as munitored through
upper Mortal of the FLD (conip ,.)nent A).

Lower record is a trace of luminescence coefficient ( rho) as
computed by analogy; computer using; data front betli portals.

Horizontal lines are dye concentrations cal. , ulated by means cf
theoretical formula, as on Figure 8.

Close empirical analog; of sensitivity: F =0.003215  R
Location: latitude 37 0 31'N. , longitude 1220121W.
Sun angle above ho: izun: approx. 700.
Water t empe ratu rc : 1 7 , 8 o C .
Temperature correction coefficient: 1.06

Figure 9. Record from Fril ihofer mine Discriminator (FLD) used as an
airborne fluorometer over Westpoint Slough, near Redwood Creek,

southwest edge of San Francisco Bay, May 1 5, 1969.
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11) During test periods, the relative attenuation of yellow light and

of green light by suspended particles is nearly a constant. This ratio is

characteristic of the water at the time and place of testing. Consequently,

fone determination of the attenuation coefficient may be adequate for a given

sample area.

12) Mechanical problems of sampling within the. one-degree field-

of-view of the FLD from the air, and of determining sample location mean

that, presently, single samples would be difficult to evaluate. Groups of

-samples are averaged in calculation of sensitivity coefficients, thereby

reducing the magnitude of probable error.
I,

13) An exponential relation probably occurs between dye concentra-

tions and sensitivity coefficients. However, the curve of this function

approaches a linear approximation. This approximation makes compilation

of test data easier.

14) There is no significant correlation between sensitivity and

solar intensity during periods of level flight. Presently, records of

solar intensity (A or B) are not necessary in interpretation of dye

concentration from rho values. Such correlations were significant during

banking of the aircraft, however, and may limit calculations to periods of

level flight.

15) The average duration of teat period resolved as a d screte

segment in calculation of dye concentrations is 10 minutes. During such

periods all factors except dye concentration can be represented by constant

values.
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Explanation

Record made from H-19 helicopter (luring passage over the margin
of a patch of Rhodamine WT dye in San Francisco Bay.

Strip chart speed was sufficiently rapid (1 inch per second) to show
effect of slow pen response time, resulting in uniform slopes.

Horizontal lines show dye concentrations calculated by theoretical
formula, as on Figure 8.

Location : 1<<ritude 37 040'N. , longitude 12L o 15' W .
Sun angle above horizon: 640
Water teriperature: 170C.
Temperature correction coefficient: 1 .08
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Figure 10. Record from Fraunhofer Line Discriminator (FLD) used as
an airborne fluorometer over San Francisco Bay, May 8, 1969.
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16)Exceptionally high sensitivity occurred during tests over the

Pacific Ocean west of Golden Gate, as a result of relatively clear water.

In areas of well dispersed dye the sensitivity appeared to differentiate

increments as small as 1 or 2 tenths of one part per billion. Sampling

with depth will be required to verify this.

17)A computer is needed for compilation of larger quantities of

FLD data, and a future FLD should produce digital output.

18)A comparison of FLD records shows that significant changes

in sensitivity occurred and illustrates the necessity of repeated

calibration. A new design for the FLD, having only one photomultiplier,

should essentially eliminate problems of varying sensitivity (Markle,

D. A. ,	 -c	 un. 2 969 ),.	 y
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Explanation

Record made front H-19 helicopter during passage over a highly
dilute patch of well-dispersed dye in relatively clear water.

Dye concentrations cannot be accurately calculated by theoretical
formula because light penetration exceeded depth of the (lye.

G raph shows extremely high sensitivity to small (lye increments
clue to clarity of water and considerable dispersal of the dye
with depth.

Period shown is from 1:30 p.m. plus 40 seconds to 1:31 p.m.
plus 35 seconds; time progresses from right to left.

Figure 11 . Record from Fraunhofer Line Discriminator used as an
airborne fluorometer over Pacific Ocean west of Golden Gate, May 14
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